Растяжение-сжатие

 

 

 

Главная

Лекция 2. Осевое растяжение – сжатие

 

Содержание

Продольные силы в поперечных сечениях

Напряжение в поперечных сечениях стержня

Деформации и перемещения. Закон Гука

Потенциальная энергия деформации

Напряженное и деформированное состояние при растяжении и сжатии

Расчеты на прочность и жесткость при растяжении и сжатии

Расчеты статически определимых стержней

Учет собственного веса при растяжении и сжатии

Подбор сечений с учетом собственного веса (при растяжении и сжатии)

Деформации при действии собственного веса

Композитный брус

Расчет статически определимых стержневых систем

Понятие о статически неопределимых системах

Основные положения. Связи необходимые и дополнительные.

Степень статической неопределимости. Методика ее определения

Раскрытие статической неопределимости

Примеры типовых расчетов статически неопределимых систем

Расчет конструкций по допускаемым нагрузкам

Расчет статически определимых систем по способу допускаемых нагрузок

Расчет статически неопределимых систем по способу допускаемых нагрузок

Расчет гибких нитей

Вопросы для самопроверки

 

Продольные силы в поперечных сечениях

Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы N, а прочие силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.

Это самый простой и часто встречающийся вид деформации. Обычно он наблюдается когда внешняя нагрузка действует вдоль продольной оси стержня. Продольной осью стержня называется линия, проходящая через центры тяжести поперечных сечений.

Обычным является растяжение стержня силами, приложенными к его концам. Передача усилий к стержню может быть осуществлена различными способами, как это показано на рис. 2.1.

 

image007

Рис. 2.1

 

Во всех случаях, однако, система внешних сил образует равнодействующую F, направленную вдоль оси стержня. Поэтому независимо от условий крепления растянутого стержня, расчетная схема в рассматриваемых случаях (рис. 2.1, а, б) оказывается единой (рис. 2.1, в) согласно принципу Сен – Венана.

Если воспользоваться методом сечений (рис. 2.2), то становится очевидным, что во всех поперечных сечениях стержня возникают нормальные силы Nz, равные силе F (рис. 2.2, б).

Сжатие отличается от растяжения, формально говоря, только знаком силы Nz. При растяжении нормальная сила Nz  направлена от сечения (рис. 2.2, б), а при сжатии – к сечению.

image014

Рис. 2.2

 

Растягивающие продольные силы принято считать положительными (рис. 2.3, а), а сжимающие – отрицательными (рис. 2.3, б).

 

image017

Рис. 2.3

 

Вместе с тем между растяжением и сжатием могут обнаружиться и качественные различия, как, например, при изучении процессов разрушения материала или при исследовании поведения длинных и тонких стерж-ней, для которых сжатие сопровождается, как правило, изгибом.

При расчете стержней, испытывающий деформацию растяжения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Nz), возникающих в стержне, и нахождение линейных перемещений в зависимости от внешней нагрузки.

Продольные силы (Nz), возникающие в поперечных сечениях стержня, определяются по внешней нагрузке с помощью метода сечений.

График, показывающий изменение продольных сил по длине оси стержня, называется эпюрой продольных сил (эп. Nz). Он дает наглядное представление о законе изменения продольной силы.

 Осью абсцисс служит ось стержня. Каждая ордината графика – продольная сила (в масштабе сил) в данном сечении стержня.

Эпюра позволяет определить, в каком сечении действует максимальное внутреннее усилие (например, найти Nmax при растяжении-сжатии). Сечение, где действует максимальное усилие будем называть опасным.

Перед построением эпюр необходимо освободить брус, в котором будем строить эпюры от опорных связей (выделить объект равновесия) и приложить к нему все действующие внешние силы (активные и реактивные). Затем необходимо установить границы участков, в пределах которых закон изменения внутренних сил постоянный. Границами таких участков являются сечения, где приложены сосредоточенные силы или начинается и кончается распределенная нагрузка, а также сечения, где имеется перелом стержня.

Применяя метод сечений и учитывая правила знаков изложенные выше, получаем уравнения изменения внутренних сил в пределах длины каждого участка бруса. Затем, используя, полученные зависимости строим графики (эпюры) этих усилий. Ординаты эпюр в определенном масштабе откладываем от базисной линии, которую проводим параллельно оси бруса.

Рассмотрим стержень постоянного поперечного сечения, жестко защемленный правым концевым сечением и нагруженный заданной внешней сосредоточенной нагрузкой F и распределенной q (рис. 2.4, а).

Прежде всего определим опорную реакцию R1, задавшись ее направлением вдоль оси z.

ΣFz=0,   -R1 - 22 + 240,6 = 0,    R1= -7,6 кН.

Знак минус говорит о том, что действительное направление опорной реакции R1 противоположно показанному на рис. 2.4, а. Исправляем его и в дальнейших расчетах знак минус у опорной реакции R1 не учитываем (рис. 2.4, в, г).

Под участком будем понимать часть стержня, на которой Nz  представляется некоторым аналитическим выражением. На другом участке Nz  будет определяться другой функцией.

Границами участка являются начало и конец стержня, сечения, где приложены сосредоточенные нагрузки, начинается и заканчивается распределенная нагрузка.

В нашем случае стержень разбивается на два участка. В пределах первого участка мысленно рассечем стержень на две части нормальным сечением (рис. 2.4, б, в).

image048

Рис. 2.4

 

Направления продольных сил (рис. 2.4, б – г) приняты в предположении, что они являются растягивающими (т. е. положительными). Если в результате расчета значение Ni получится со знаком «минус», то это будет означать, что в действительности стержень в этом сечении сжат.

Поскольку обе части стержня являются равноправными, то N1 на первом участке в сечении, определяемом координатой z1, можно определить рассматривая равновесие его правой (рис. 2.4, б) либо левой (рис. 2.4, в) частей.

В нашем случае для определения N1 предпочтительнее рассмотреть равновесие правой части – к ней приложено меньше сил (рис. 2.4, б). Начало координат совмещаем с правым концевым сечением первого участка. Ось z направляем налево. Пределы изменения положения сечения вдоль продольной оси  0z10,6 м. Спроектируем все силы, действующие на правую часть, на продольную ось.

ΣFz=0,   N1 - 24z1 = 0,    N1 =24z1,   N1(0)= 0,    N1(0,6)= 14,4 кН.

Поскольку функция N1 =24z1 получилась линейная, то для построении графика ее изменения вдоль продольной оси (эп. Nz) достаточно вычислить значения продольной силы на границах первого участка, отложить их перпендикулярно продольной оси вверх (стержень растянут) и провести через них прямую линию (рис. 2.4, д).

Таким образом, в пределах первого участка стержень растянут и нормальная сила изменяется по линейному закону.

Этот же результат можно получить, рассматривая равновесие левой части стержня.

Здесь при выборе системы координат рассмотрим два варианта. При первом варианте начало координат совмещаем с левым концевым сечением второго участка. Ось z направляем направо. Пределы изменения положения сечения вдоль продольной оси 0,4 м≤1,0 м. Спроектируем все силы, действующие на левую часть, на продольную ось.

ΣFz=0,   N1 +7,6 – 22 + 24∙( - 0,4)= 0,    N1 =24- 24,   N1(0,4)= 14,4 кН,    N1(1,0)= 0.

Во втором варианте введем скользящую систему координатных осей. Начало координат совмещаем с левым концевым сечением первого участка. Ось z направляем направо. Пределы изменения положения сечения вдоль продольной оси 0≤0,6 м. Имеем

ΣFz=0,   N1 +7,6 – 22 + 24 = 0,    N1 =14,4- 24,   N1(0)= 14,4 кН,    N1(0,6)= 0.

Заметим, что при выборе скользящей системы координат, функция N1=f(z, q) меняется от нуля, что делает последующие расчеты менее трудоемкими.

Сравнивая все три варианта определения N1, приходим к выводу, что когда мы оставляем ту часть стержня, к которой приложено меньше внешних нагрузок, то расчеты оказываются более простыми.

При некотором навыке можно сразу составить выражение для N1, не изображая отдельные части бруса, на которые он расчленяется поперечными сечениями (рис. 2.4, б, в). Например,

при  0z10,6 м,  N1 =24z1;  

при  0,4 м≤1,0 м,  N1 =7,6 + 22 - 24∙(-0,4);

при 0≤0,6 м,  N1 = -7,6 + 22 - 24.

Таким образом, на основании метода сечений продольная сила в произвольном поперечном сечении стержня численно равна алгебраической сумме проекций внешних сил, приложенных к стержню по одну сторону от рассматриваемого сечения, на его продольную ось.

Причем проекция внешней силы берется со знаком плюс, если сила растягивает часть стержня от точки ее приложения до рассматриваемого сечения и, наоборот, со знаком минус – если сжимает.

Осталось определить значение продольной силы N2 в произвольном сечении, определяемом координатой z2, на втором участке (рис. 2.4, г). Так как продольная сила N2 численно равна алгебраической сумме внешних сил, приложенных к стержню слева от сечения (рассматриваем равновесие левой части стержня), то N2= -7,6 кН  (реакция R1=7,6 кН сжимает часть стержня длиной z2). Здесь принимаем скользящую систему координат, с началом в левом концевом сечении второго участка. Ось z направляем направо.

Эпюра Nz на втором участке представлена на рис 2.4, д в виде прямоугольника со знаком минус, поскольку N2= -7,6 кН =const. Таким образом, в пределах второго участка стержень претерпевает сжатие постоянной нормальной силой.

Каждая ордината эп. Nz  (рис. 2.4, д) в принятом масштабе равна величине продольной силы, действующего в том поперечном сечении стержня, которому соответствует эта ордината.

Видно, что на участке между точками приложения сосредоточенных сил R1 и F продольная сила имеет постоянное значение, а на участке, где приложена распределенная внешняя нагрузка, меняется по линейному закону (рис. 2.4, д).

Характерно, что скачки на эп. Nz  обусловлены наличием в соответствующих сечениях сосредоточенных сил R1 и F.

Рассмотрим несколько примеров определения внутренних сил.

 

Пример 1.

Пусть имеется стержень постоянного поперечного сечения, нагруженный силами 2Р и 3Р вдоль продольной оси стержня, показанный на рис.2.4.1. Определить величину внутренних сил.

image003

Рис.2.4.1

 

Решение.

Стержень может быть разделен на два участка, граничными точками которых являются точки приложения сосредоточенных сил и точка закрепления. Если начало координат расположить на правом конце стержня, а ось z направить справа налево, то, используя метод сечений, рассекая последовательно участки, отбрасывая левую часть, заменяя ее действие внутренними усилиями N, Qy, Mx и уравновешивая оставшуюся часть, получим:

I участок:

Как видно, при растяжении в поперечных сечениях стержня возникает только один внутренний силовой фактор - нормальная сила N.

II участок:

Таким образом, нормальная сила равна алгебраической сумме проекций сил, приложенных к отсеченной части на продольную ось

Полученные результаты для большей наглядности удобно представить в виде графика, (эпюры N), показывающего изменение продольной силы вдоль оси стержня (рис.2.4.1). Построим на первом участке линию параллельную оси z на высоте 2Р, на втором участке – линию со значением -Р. Области ограниченные графиком и осью z принято штриховать и обозначать знак этой области. Видно, что наибольшая продольная сила возникает на первом участке стержня и, как следствие, при прочих равных условиях, он скорее может разрушиться, чем второй участок.

 

Пример 2.

Построить эпюру продольных сил для жестко защемленной балки (рис.2.4.2).

Решение:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.

2. Определяем продольную силу  в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

3. По найденным значениям строим эпюру .

Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные – под осью.

Рис.2.4.2

 

Пример 3.

Два стержня, соединенные в т. А, находятся под действием силы Р (рис.2.5, а). Определить усилия, действующие в стержнях.

image029

а)                                                  б)                                               в)

Рис.2.5

 

Решение.

Воспользуемся методом сечений. Рассечем стержни в произвольном месте сечения n-n. Отбросим левую отсеченную часть. Заменим отброшенную часть, приложив усилия N1 и N2 в сечениях к правой части. Направление усилий целесообразно выбрать так чтобы они растягивали отсеченные части (рис.2.5, б).

Уравновесим отсеченную часть, запишем уравнения

Решая, из первого уравнения получим

из второго уравнения окончательно имеем

Так как величина силы N2 < 0, то её направление следует изменить на противоположное (рис.2.5, в). Согласно рисунку нормальная сила N1 растягивает отсеченную часть стержня 1 - она положительна, сила N2 сжимает отсеченную часть стержня 2 - она отрицательна.

 

Пример 4.

Абсолютно жесткий брус подвешен на двух стержнях и находится под действием силы Р (рис.2.6, а). Определить усилия в стержнях.

Решение.

Используя метод сечений, получим отсеченную часть, показанную на рис.2.6, б.

Запишем уравнения равновесия  и :

image047

Рис.2.6

 

Решая систему уравнений, получим

 

Напряжение в поперечных сечениях стержня

Нормальная сила N приложена в центре тяжести сечения, яв­ляется равнодействующей внутренних сил в сечении и, в соответст­вии с этим, определяется следующим образом:

Но из этой формулы нельзя найти закон распределения нор­мальных  напряжений в поперечных сечениях стержня. Для этого обратимся к анализу характера его деформирования.

Если на боковую поверхность этого стержня нанести прямо­угольную сетку (рис. 2.2, б), то после нагружения поперечные ли­нии а-а, b-b и т.д. переместятся параллельно самим себе, откуда следует, что все поверхностные продольные волокна удлинятся одинаково. Если предположить также, что и внутренние волокна работают таким же образом, то можно сделать вывод о том, что по­перечные сечения в центрально растянутом стержне смещаются параллельно начальным положениям, что соответствует гипотезе плоских сечений (гипотезе Бернулли).

Значит, все продольные волокна стержня находятся в одина­ковых условиях, а следовательно, нормальные напряжения во всех точках поперечного сечения должны быть также одинаковы и рав­ны

где A - площадь поперечного сечения стержня.

В сечениях, близких к месту приложения внешних сил, гипотеза Бернулли нарушается: сечения искривляются, и напряжения в них распределяются неравномерно. По мере удаления от сечений, в которых приложены силы, напряжения выравниваются, и в сечениях, удаленных от места приложения сил на расстояние, равное наибольшему из размеров поперечного сечения, напряжения можно считать распределенными по сечению равномерно. Это положение, называемое принципом Сен-Венана, позволяет при определении напряжений в сечениях, достаточно удаленных от мест приложения внешних сил, не учитывать способ их приложения, заменять систему внешних сил статически эквивалентной системой. Например, экспериментально установлено, что во всех трех случаях нагружения стержня (рис. 2.7, а) значения напряжений в сечениях, удаленных от крайних сечений на расстояние не менее высоты сечения h, одинаковы:  (рис. 2.7, б), а в сечениях, близких к местам приложения внешних сил, распределения напряжений по сечению существенно различны (рис. 2.7, в).          

Ocr0306

Рис.2.7

 

Высказанное предположение о равномерном распределении нормальных напряжений в поперечном сечении справедливо для участков, достаточно удаленных от мест: резкого изменения пло­щади поперечного сечения (рис. 2.2, в); скачкообразного изменения внешних нагрузок; скачкообразного изменения физико-механических характеристик конструкций.

Нормальные напряжения при сжатии определяют также, как и при растяжении, но считают отрицательными.

Следует помнить, что длинные (тонкие) стержни, нагруженные сжимающими силами, могут потерять устойчивость. Расчет стержней на устойчивость рассмотрен в разделе «Устойчивость». 

В инженерных сооружениях встречаются растянутые или сжатые элементы, имеющие отверстия. В сечениях с отверстием определяют осредненные нормальные напряжения по формуле

где  - площадь поперечного сечения нетто; A - площадь поперечного сечения брутто;  - площадь его ослабления.

 

Деформации и перемещения. Закон Гука

Рассмотрим однородный стержень с одним концом, жестко за­деланным, и другим - свободным, к которому приложена централь­ная продольная сила Р (рис. 2.8). До нагружения стержня его длина равнялась l - после нагружения она стала равной  (рис. 2.8). Величину  называют абсолютной продольной деформацией (абсолютным удлинением) стержня. В большинстве случаев оно мало по сравнению с его первоначальной длиной l (l<<l).

Рис. 2.8

 

Если в нагруженном стержне напряженное состояние является однородным, т.е. все участки стержня находятся в одинаковых ус­ловиях, деформация  остается одной и той же по длине стержня и равной

Величина ε называется относительной продольной деформацией.

Если же по длине стержня возникает неоднородное напряжен­ное состояние, то для определения его абсолютного удлинения не­обходимо рассмотреть бесконечно малый элемент длиной dz (рис. 2.8). При растяжении он увеличит свою длину на величину  и его деформация составит:

В пределах малых деформаций при простом растяжении или сжатии закон Гука записывается в следующем виде (нормальные напряжения в поперечном сечении прямо пропорциональны относительной линейной деформации ):

Величина Е представляет собой коэффициент пропорциональ­ности, называемый модулем упругости материала первого рода (модуль продольной упругости). Его величина постоянна для каждого материала. Он характеризует жесткость материала, т.е. способность сопротивляться деформированию под действием внешней нагрузки.

Из совместного рассмотрения уравнений (2.5) и (2.6) получим:

откуда с учетом того, что

окончательно получим:

Если стержень изготовлен из однородного изотропного мате­риала с Е const, имеет постоянное поперечное сечение A const и нагружен по концам силой Р, то из (2.7) получим

Зависимость (2.8) также выражает закон Гука. Знаменатель EA называется жесткостью при растяжении - сжатии или продольной жесткостью.

При решении многих практических задач возникает необходи­мость, наряду с удлинениями, обусловленными действием механи­ческих нагрузок, учитывать также удлинения, вызванные темпера­турным воздействием. В этом случае пользуются принципом неза­висимости действия сил, и полные деформации рассматривают как сумму силовой и температурной деформаций:

где  - коэффициент температурного расширения материала; t -пе­репад температуры тела. Для однородного стержня, нагруженного по концам продольными силами Р и равномерно нагретого по длине, получим:

 

Потенциальная энергия деформации

Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу W на соответству­ющих перемещениях. Одновременно с этим в упругом теле накап­ливается потенциальная энергия его деформирования U. При дей­ствии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде:

W = U + K.                          (2.11)

При действии статических нагрузок К = 0, следовательно,

W = U.                                  (2.12)

Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформа­ции. При разгрузке тела производится работа за счет потенциаль­ной энергии деформации, накопленной телом. Таким образом, уп­ругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружи­нах часовых механизмов, в амортизирующих рессорах и др. В слу­чае простого растяжения (сжатия) для вывода необходимых расчет­ных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.

На рис. 2.9, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку , ниже показан график изменения величины удлинения стержня   в зависимости от силы Р (рис. 2.9, б). В соответствии с законом Гука этот график носит линейный характер.

Пусть некоторому значению силы Р соответствует удлинение стержня . Дадим некоторое приращение силе  - соответству­ющее приращение удлинения составит . Тогда элементарная работа на этом приращении удлинения составит:

Рис.2.9

               

вторым слагаемым, в силу его малости, можно пренебречь, и тогда

Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка - перемещение”, работа внешней силы Р на перемещении  будет равна площади треугольника ОСВ (рис. 2.9), т.е.

В свою очередь, когда напряжения  и деформации  распреде­лены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде:

Поскольку, в данном случае имеем, что , то

т.е. подтверждена справедливость (2.12).

С учетом (2.8) для однородного стержня с постоянным попе­речным сечением и при Р = const из (2.17) получим:

Единицей измерения потенциальной энергии деформации является 1Hм = 1Дж.

 

Напряженное и деформированное состояние при растяжении и сжатии

Рассмотрим более подробно особенности напряженного состоя­ния, возникающего в однородном растянутом стержне. Определим напряжения, возникающие на некоторой наклонной площадке, со­ставляющей угол  с плоскостью нормального сечения (рис. 2.10, а).

Из условия , записанного для отсеченной части стержня (рис. 2.10, б), получим:

где A - площадь поперечного сечения стержня,  - пло­щадь наклонного сечения. Из (2.19) легко установить:

Раскладывая напряжение р по нормали и касательной к на­клонной площадке (рис. 2.10, в), с учетом (2.20) получим:

Рис. 2.10

 

Полученные выражения показывают, что для одной и той же точки тела величины напряжений, возникающих в сечениях, про­ходящих через эту точку, зависят от ориентации этой площадки, т.е. от угла . При  из (2.21) следует, что . При , т.е. на продольных площадках, . Это означает, что продольные слои растянутого стержня не взаимодействуют друг с другом. Касательные напряжения  принимают наибольшие зна­чения при , и их величина составляет . Важно отме­тить, что . Следовательно, в любой точке тела на двух взаимно перпендикулярных площадках касательные напряже­ния равны между собой по абсолютной величине. Это условие является общей закономерностью любого напряженного состояния и носит назва­ние закона парности касательных напряжений.

Теперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направ­лении сопровождается пропорциональным уменьшением попереч­ных размеров стержня (рис. 2.11).

Если обозначить:

то, как показывают эксперименты,  для данного материала и является безразмерным коэффициентом Пуассона. Вели­чина  является важной характеристикой материала и определяется экспериментально. Для реальных материалов  принимает значе­ния 0,1...0,45.

Рис. 2.11

 

При растяжении стержня возникают не только линейные, но и угловые деформации.

Рассмотрим прямой угол АВС (рис. 2.12, а), образованный отрез­ками АВ и АС, в недеформированном состоянии.

Рис. 2.12

 

При растяжении стержня точки А, В и С займут положение А¢, B¢, C¢ соответственно. Величина

называется угловой деформацией или угловым сдвигом в точке А.

Совместим точки А и А¢ и рассмотрим взаимное расположение отрезков АВ и А¢B¢ (рис. 2.12, б). На этом рисунке отметим вспомо­гательные точки K и L и прямую n, перпендикулярную отрезку А¢B¢. Из рис. 2.12, б имеем:

откуда с учетом   получим:

Для определения  спроектируем ломаную  на ось n

  

откуда, учитывая ма­лость угла , т.е. , получим:

В результате совместного рассмотрения (2.22) и (2.23) получим:

Откуда .

Следовательно,

Сопоставляя выражение  с выражением  из (2.21) окон­чательно получим закон Гука для сдвига:

где величина   называется модулем сдвига или модулем упругости материала второго рода.

 

Расчеты на прочность и жесткость при растяжении-сжатии

Основной задачей расчета конструкции является обеспечение ее безопасной эксплуатации. Важнейшим условием, обеспечивающим безопасную эксплуатацию конструкции, является условие прочности. Существуют различные методы обеспечения прочности конструкций. Мы чаще всего будем пользоваться одним из этих методов – расчетом по допускаемым напряжениям. Согласно этому методу для конструкций, работающих на растяжение-сжатие, условие прочности, составленное для опасного сечения,  можно записать в таком виде:

где  – максимальное напряжение в конструкции;  – характеристика материала, называемая допускаемым напряжением.

Допускаемое напряжение находится по формуле

где  – предельное напряжение, при достижении которого в стержне наступает предельное состояние материала: появляются пластические деформации, если материал стержня – пластичный, или происходит разрушение, если стержень выполнен из хрупкого материала; n – нормируемый коэффициент запаса прочности.

Кроме формулы (2.26), возможен второй вариант условия прочности

называется действительным коэффициентом запаса прочности, показывающим во сколько раз надо увеличить максимальное напряжение в стержне, чтобы материал стержня оказался в опасном (предельном) состоянии.

Условие прочности в зависимости от цели поставленной задачи позволяет выполнять расчеты на прочность двух видов: проектный и проверочный. Для спроектированного стержня можно также определять допускаемую нагрузку.

Проектный расчет выполняют с целью определения размеров поперечных сечений элемента конструкции при известных рабочих нагрузках и материале (допускаемых напряжений). Площадь поперечного сечения определяют из выражения

Форма сечения стержня не влияет на его прочность при растяжении (сжатии). Форму сечения стержня необходимо знать только для определения размеров сечения при известном значении площади.

Зная площадь сечения и его форму, находят размеры сечения.

Проверочный расчет выполняют для спроектированной конструкции с целью проверки ее прочности. При проверочном расчете должны быть известны площадь опасного сечения, нагрузка и материал (допускаемое напряжение). Проверочный расчет выполняют по формуле (2.26).

Определение допускаемой нагрузки для спроектированного элемента конструкции, размеры поперечного сечения которого и материал (допускаемые напряжения) известны. Условие прочности в этом случае записывают в виде

Зная значение , определяют допускаемую нагрузку .

Так как допускаемые напряжения не имеют точного значения, а выбираются приближенно, то при проверочном расчете максимальные рабочие напряжения могут превышать допускаемые на 5%. По этой же причине можно округлять полученные в расчетах значения площади опасного поперечного сечения или допускаемой нагрузки так, чтобы максимальные напряжения отличались от допускаемых не более чем на 5%. По этой же причине можно округлять полученные в расчетах значения площади опасного поперечного сечения или допускаемой нагрузки та, чтобы максимальные напряжения отличались от допускаемых не более чем на 5%.

При проектировании элементов конструкций стремятся сделать их во всех сечениях равнопрочными.

Рассмотренные три вида расчетов на прочность можно выполнять не только при растяжении или сжатии, а при любом виде деформации (сдвиге, кручении, изгибе).

При проектировании строительных конструкций расчет на прочность стальных элементов, подверженных центральному растяжению или сжатию, следует выполнять по формуле

где коэффициент условий работы, принимаемый по СНИП (см. табл.2.1) или другим нормам.

 

Таблица 2.1

Элементы конструкции

Колонны общественных зданий и опор водонапорных башен

Элементы стержневых конструкций покрытий и перекрытий:

а) сжатых при расчетах на устойчивость

б) растянутых в сварных конструкциях

Сплошные составные балки, колонны, несущие статическую нагрузку

и выполненные с помощью болтовых соединений, при расчетах на прочность

Сечения прокатных и сварных элементов, несущих статическую нагрузку,

при расчетах на прочность

Сжатые элементы из одиночных уголков, прикрепляемые одной полкой  

0,95

 

0,95

0,95

 

1,1

 

1,1

0,75

Примечание: В случаях, не оговоренных в настоящих нормах, в формулах следует принимать  .

                                             

 

Для хрупких строительных материалов условия прочности принимают вид:

при растяжении:

при сжатии:

где  и  – допускаемые напряжения при растяжении и сжатии; nt и nc – нормативные коэффициенты запаса прочности по отношению к пределу прочности (nt, nc>1).

Для центрально сжатых бетонных элементов формула (2.33) записывается в виде:

где  – коэффициент, принимаемый для бетона тяжелого, мелкозернистого и легкого равным 1,00; для ячеистого автоклавного – 0,85; для ячеистого неавтоклавного – 0,75.

В некоторых случаях работоспособность элемента конструкции определяется не только его прочностью, но и жесткостью, т.е. способностью элемента воспринимать нагрузки без недопустимых упругих деформаций. При расчетах на жесткость определяют максимальные перемещения сечений и сопоставляют их с допускаемыми перемещениями.

Условие жесткости, ограничивающее изменение длины элемента, имеет сле­дующий общий вид:

где   - изменение размеров детали;

[] - допускаемая величина этого изме­нения.

Учитывая, что при растяжении (сжатии) абсолютное удлинение в общем виде определяется как алгебраическая сумма величин   по участкам

условие жесткости при растяжении (сжатии) запишем следующим образом:

Так как перемещение, согласно закону Гука, зависит от нагрузки и размеров поперечного сечения, условие жесткости позволяет решать те же три вида задач, что и условие прочности.  

 

Расчеты статически определимых стержней

Статически определимый стержень – это стержень, который можно рассчитать, используя только уравнения равновесия (уравнения статики).

В любой науке, которая называется «точной» и в которой используются аналитические методы описания состояний и явлений, не обойтись без моделей. В нашем случае при решении различных задач мы каждый раз будем выбирать для рассматриваемого объекта расчетную схему.

Расчетная схема – это упрощенная схема конструкции или ее элементов, освобожденная от несущественных в данной задаче особенностей. При этом расчетная схема должна отражать все наиболее существенное для характера работы данной конструкции и не содержать второстепенных факторов, мало влияющих на результаты ее расчета. Построение и обоснование расчетной схемы – ответственный этап проектирования и расчета конструкции.

Перейдем к рассмотрению конкретных примеров.

 

Пример 5.

Чугунная труба-стойка высотой H=l=3м с наружным диаметром D=25 см и внутренним диаметром d=20 см нагружена сжимающей силой F=50 т, модуль упругости чугуна . Найти напряжение  в поперечном сечении колонны, абсолютное   и относительное укорочения .

Решение.

Как уже говорилось выше, решение задачи начинается с выбора расчетной схемы. В данном случае стойка изображается как вертикальный стержень длиной H=l=3м, жестко закрепленный в нижней части (условное изображение фундамента или земли). К верхней части стержня приложена сосредоточенная сжимающая сила (направление к стержню). При этом линия действия силы должна совпадать с осью стержня. Кроме того, рядом необходимо изобразить поперечное сечение стойки с указанием основных размеров. В данном примере – это кольцо. Расчетная схема для решения задачи изображена на рис. 2.13, а.

Далее строим эпюру продольной силы и определяем максимальное внутреннее усилие, возникающее в колонне. Поскольку внешняя нагрузка постоянна по высоте, то возникает только одна сжимающая продольная сила  

image056

Рис. 2.13

 

Максимальное нормальное напряжение  определяется по формуле:

где A2] – площадь трубы:

тогда:

Абсолютное и относительное укорочения стойки определяем по формулам:

Знак "минус" обозначает уменьшение размера (укорочение).

 

Пример 6.

Стальной стержень круглого сечения растягивается усилием F=10 т. Относительное удлинение не должно превышать l/2000, а напряжение – 1200 кг/см2. Найти наименьший диаметр, удовлетворяющий этим условиям, если модуль упругости стали  

Решение.

Как и ранее, решение задачи начинается с изображения расчетной схемы и построения эпюра продольных сил (рис. 2.14).

image060

Рис.2.14

 

По условию задачи напряжение не должно превышать 1200 кг/см2, в связи с чем данная величина может быть принята за расчетное сопротивление материала стойки на растяжение, то есть . По аналогии заданное относительное удлинение можно принять за предельно допустимое для данной стойки, то есть . В результате необходимо подобрать диаметр стойки, удовлетворяющий условию прочности и условию жесткости.

Продольное растягивающее усилие  равно по величине внешней нагрузке, действующей на стержень N=10 т=0,1 MH.

Требуемая площадь поперечного сечения колонны из условия прочности будет определяться выражением:

Зная требуемую площадь, выразим необходимый из условия прочности диаметр:

Условие жесткости при центральном растяжении-сжатии:

Выражаем из предельного неравенства требуемую из условия жесткости площадь поперечного сечения:

Диаметр стойки из условия жесткости определим по формуле:

Окончательно принимаем из двух диаметров больший, d=3,6 см.

 

Пример 7.

Определить грузоподъемность и удлинение балки, если R=160 МПа ; A=12 см2;

Расчетная схема бруса и эпюра продольных сил изображены на рис. 2.15.

image066

Рис.2.15

 

Решение.

Грузоподъемность бруса – это максимальная нагрузка, которую он может выдержать, не разрушаясь. Таким образом, необходимо определить требуемую нагрузку из условия прочности:

Согласно эпюре , тогда условие прочности примет вид:

Отсюда грузоподъемность бруса будет равна:

Для определения удлинения стержня  разбиваем его на участки. Каждый участок, должен иметь постоянную жесткость EA и величину продольной силы. Таким образом, для данного бруса получаем три участка (на рис. 2.15 они обозначены римскими цифрами), тогда абсолютная деформация в общем виде будет определяться выражением:

в котором каждое слагаемое определяется отдельно:

где  - значения продольных сил соответственно на первом, втором и третьем участках;  - длины соответственно первого, второго и третьего участков;  - значения модулей упругости материалов бруса для каждого участка;  - площади поперечных сечений стержня на первом, втором и третьем участках.

Поскольку жесткости всех трех участков одинаковые (балка изготовлена из одного материала и имеет постоянное по всей длине поперечное сечение), можно обозначить  и вынести этот множитель за скобки. В результате получим выражение в виде:

где

 

Пример 8.

Проверить прочность чугунного бруса (рис.2.16, а). Принять МПа;  МПа, допускаемый коэффициент запаса прочности [n]= 4.  

Решение.

Строим эпюры продольных сил N и нормальных напряжений  (рис.2.16, б и в).

Ocr0310

Рис.2.16

 

Напряжения на участках бруса

Так как материал бруса имеет различную прочность при растяжении и сжатии, проверку прочности следует выполнять для сжатого и растянутого участков, несмотря на то, что на участке I напряжение значительно больше по абсолютному значению.

Коэффициенты запаса прочности

- прочность обеспечена;

- прочность обеспечена.

Из решения задачи можно сделать следующие выводы:

1) прочность стержня не обеспечена, так как на одном его участке коэффициент запаса прочности меньше требуемого;

2) на участках I и II коэффициент запаса прочности завышен, следовательно, эти участки бруса можно сделать меньшего диаметра. При проектировании элементов конструкций следует стремиться к тому, чтобы во всех сечениях коэффициент запаса прочности был равен или близок к требуемому.

Проверку прочности бруса можно было выполнить, используя условие прочности в виде , определив предварительно допускаемые напряжения по формулам

 

Учет собственного веса при растяжении и сжатии

Подбор сечений с учетом собственного веса (при растяжении и сжатии)

При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.

Пусть вертикальный стержень (рис.2.17, а) закреплен своим верхним концом; к нижнему его концу подвешен груз Р. Длина стержня l, площадь поперечного сечения F, удельный вес материала  и модуль упругости Е. Подсчитаем напряжения по сечению АВ, расположенному на расстоянии x от свободного конца стержня.

image003-13

а)                                       б)

Рис.2.17

 

Рассечем стержень сечением АВ и выделим нижнюю часть длиной x с приложенными к ней внешними силами (рис.2.17, б) — грузом Р и ее собственным весом . Эти две силы уравновешиваются напряжениями, действующими на площадь АВ от отброшенной части. Эти напряжения будут нормальными, равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня, т. е. растягивающими. Величина их будет равна:

Таким образом, при учете собственного веса нормальные напряжения оказываются неодинаковыми во всех сечениях. Наиболее напряженным, опасным, будет верхнее сечение, для которого x достигает наибольшего значения l; напряжение в нем равно:

Условие прочности должно быть выполнено именно для этого сечения:

Отсюда необходимая площадь стержня равна:

От формулы, определяющей площадь растянутого стержня без учета влияния собственного веса, эта формула отличается лишь тем, что из допускаемого напряжения вычитается величина .

Чтобы оценить значение этой поправки, подсчитаем ее для двух случаев. Возьмем стержень из мягкой стали длиной 10 м; для него , а величина. Таким образом, для стержня из мягкой стали поправка составит 78,5/140 т. е. около 0,6%. Теперь возьмем кирпичный столб высотой тоже 10 м; для него , а величина . Таким образом, для кирпичного столба поправка составит 18/1,2, т.е. уже 15%.

Вполне понятно, что влиянием собственного веса при растяжении и сжатии стержней можно пренебрегать, если мы не имеем дела с длинными стержнями или со стержнями из материала, обладающего сравнительно небольшой прочностью (камень, кирпич) при достаточном весе. При расчете длинных канатов подъемников, различного рода длинных штанг и высоких каменных сооружений (башни маяков, опоры мостовых ферм) приходится вводить в расчет и собственный вес конструкции.

В таких случаях возникает вопрос о целесообразной форме стержня. Если мы подберем сечение стержня так, что дадим одну и ту же площадь поперечного сечения по всей длине, то материал стержня будет плохо использован; нормальное напряжение в нем дойдет до допускаемого лишь в одном верхнем сечении; во всех прочих сечениях мы будем иметь запас в напряжениях, т. е. излишний материал. Поэтому желательно так запроектировать размеры стержня, чтобы во всех его поперечных сечениях (перпендикулярных к оси) нормальные напряжения были постоянны,

Такой стержень называется стержнем равного сопротивления растяжению или сжатию. Если при этом напряжения равны допускаемым, то такой стержень будет иметь наименьший вес.

Возьмем длинный стержень, подверженный сжатию силой Р и собственным весом (рис.2.18). Чем ближе к основанию стержня мы будем брать сечение, тем больше будет сила, вызывающая напряжения в этом сечении, тем большими придется брать размеры площади сечения. Стержень получит форму, расширяющуюся книзу. Площадь сечения F будет изменяться по высоте в зависимости от  x, т. е. F=f(x).

Установим этот закон изменения площади в зависимости от расстояния сечения x от верха стержня.

 

image021-11
Рис.2.18

 

Площадь верхнего сечения стержня F0 определится из условия прочности:

где  — допускаемое напряжение на сжатие; напряжения во всех прочих сечениях стержня также должны равняться величине

Чтобы выяснить закон изменения площадей по высоте стержня, возьмем два смежных бесконечно близких сечения на расстоянии x от верха стержня; расстояние между сечениями dx; площадь верхнего назовем F(x), площадь же смежного F(x)+dF(x).

Приращение площади dF(x) при переходе от одного сечения к другому должно воспринять вес  элемента стержня между сечениями. Так как на площади dF(x) он должен вызвать напряжение, равное допускаемому , то dF(x) определится из условия:

Отсюда:

После интегрирования получаем:

При x=0 площадь F(x)=F0; подставляя эти значения, имеем:

 и

Отсюда

Если менять сечения точно по этому закону, то боковые грани стержня получат криволинейное очертание (рис.2.18), что усложняет и удорожает работу. Поэтому обычно такому сооружению придают лишь приближенную форму стержня равного сопротивления, например в виде усеченной пирамиды с плоскими гранями. Приведенный расчет является приближенным. Мы предполагали, что по всему сечению стержня равного сопротивления передаются только нормальные напряжения; на самом деле у краев сечения напряжения будут направлены по касательной к боковой поверхности.

В случае длинных канатов или растянутых штанг форму стержня равного сопротивления осуществляют тоже приближенно, разделяя стержень по длине на ряд участков; на протяжении каждого участка сечение остается постоянным (рис.2.19) — получается так называемый эквивалентный ступенчатый стержень.

 

image046-6
                 Рис.2.19

 

Определение площадей  при выбранных длинах производится следующим образом. Площадь поперечного сечения первого нижнего участка будет по формуле равна:

Чтобы получить площадь поперечного сечения второго участка, надо нагрузить его внешней силой Р и весом первого участка :

Для третьего участка к внешней силе добавляются веса первого и второго участков. Подобным же образом поступают и для других участков.

 

Деформации при действии собственного веса

При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение . Для вычисления полного удлинения стержня постоянного сечения определим сначала удлинение бесконечно малого участка стержня длиной dx, находящегося на расстоянии x от конца стержня (рис.2.20).

 

image054-3
Рис.2.20

 

Абсолютное удлинение этого участка равно

Полное удлинение стержня  равно:

Величина  представляет собой полный вес стержня. Таким образом, для вычисления удлинения от действия груза и собственного веса можно воспользоваться прежней формулой:

подразумевая под S внешнюю силу и половину собственного веса стержня.

Что же касается деформаций стержней равного сопротивления, то, так как нормальные напряжения во всех сечениях одинаковы и равны допускаемым , относительное удлинение по всей длине стержня одинаково и равно

Абсолютное же удлинение при длине стержня l равно:

Деформацию ступенчатых стержней следует определять по частям, выполняя подсчеты по отдельным призматическим участкам. При определении деформации каждого участка учитывается не только его собственный вес, но и вес тех участков, которые влияют на его деформацию, добавляясь к внешней силе. Полная деформация получится суммированием деформаций отдельных участков.

 

Пример 9.

Определить объем кладки мостовой опоры высотой 42 м, нагруженной сжимающей силой F=400 т, для двух вариантов:

1 вариант - опора постоянного сечения;

2 вариант - опора ступенчатая из трех частей одинаковой высоты.

Объемный вес материала кладки , расчетное сопротивление материала кладки на сжатие

Решение.

Объем кирпичной кладки вычисляется по формуле:

                                                                                            

где A2] - площадь поперечного сечения столба; H[м] - высота столба.

Таким образом, для решения задачи необходимо знать площади поперечных сечений мостовой опоры.

1.Вариант. Расчетная схема и эпюра внутренних усилий  для данного варианта изображена на рис. 2.21.

image068

Рис.2.21

 

Максимальная сжимающая продольная сила возникает у основания опоры и определяется выражением (для удобства будем подставлять значения внутренних усилий по абсолютной величине):

Записываем условие прочности:

Подставляя в это выражение значение  получим:

Отсюда требуемая площадь из условия прочности кладки на сжатие равна:

Объем кладки для первого варианта будет равен:

2 вариант. Расчетная схема и эпюра внутренних усилий для данного варианта изображена на рис. 2.22.

Мостовая опора состоит из трех ступеней, высота каждой . Площади поперечных сечений ступеней соответственно , в связи с чем в пределах каждой ступени от действия собственного веса будут возникать различные по величине продольные силы и напряжения.

Таким образом, для решения задачи необходимо рассмотреть условие прочности для каждой ступени отдельно.

image070

Рис.2.22

 

1-я ступень. Максимальная сжимающая продольная сила для первой ступени (рис. 2.22):

По аналогии с вариантом 1, записываем для первой ступени условие прочности и подставляем в него исходные данные:

Отсюда требуемая площадь первой ступени равна:

2-я ступень. Максимальная сжимающая продольная сила для второй ступени (рис. 2.22):

Записываем для второй ступени условие прочности и подставляем в него исходные данные:

Отсюда требуемая площадь второй ступени равна:

3-я ступень. Максимальная сжимающая продольная сила для третьей ступени (рис. 2.22):

Записываем для третьей ступени условие прочности, из которого по аналогии с предыдущими записями определяем требуемую площадь поперечного сечения:

Объем кладки мостовой опоры для второго варианта определяется выражением:

Таким образом, мостовая опора, состоящая из ступеней различной площади, выгоднее по расходу материала, чем опора постоянного по всей высоте сечения.

 

Пример 10.

Определить полное удлинение стержня, с учетом собственного веса, а также перемещение сечения m-n. Площадь поперечного сечения – А, модуль упругости – Е, объемный вес материала -  . Расчетная схема стержня изображена на рис. 2.23.

image072

Рис.2.23

 

Решение.

Для решения задачи используем принцип независимости действия сил, а именно: отдельно построим эпюры продольных сил от действия сосредоточенной силы F и от действия собственного веса, то есть от равномерно распределенной продольной нагрузки . Расчетная схема и эпюры продольных сил  и  изображены на рис. 2.23.

Полное удлинение стержня  будет складываться из удлинения, полученного стержнем от действия сосредоточенной силы F и от действия собственного веса:

Или в другом виде:

Для того, чтобы определить перемещение сечения m-n отбрасываем часть стержня ниже сечения m-n, а ее действие заменяем сосредоточенной силой , равной продольной силе в сечении m-n:

В результате получаем новую расчетную схему, которая приведена на рис. 2.24.

image074

Рис.2.24

 

А теперь решаем новую задачу о нахождении полного удлинения  уже для данного стержня (рис. 2.23):

 

Композитный брус

Брус, состоящий из различных материалов, называется композитным. Будем полагать, что соединение материалов по всей длине бруса обеспечивает их совместную работу. При этом сече­ния остаются плоскими, а линейная деформация отдельного волок­на равномерная. Чтобы сохранить эти предположения для торцевых сечений, нагрузку можно осуществить, например, через жесткую обойму. Рассмотрим брус, состоящий из различных материалов на рис.2.24.1, а. При постоянстве деформации εх напряжения распре­деляются по сечению неравномерно на рис.2.24.1, б, что объясняется различием модулей продольной упругости составляющих материа­лов.

Рис.2.24.1

Очевидно,

Откуда

Тогда

т.е. напряжения  распределя­ются прямо пропорционально модулям упругости.

При определении переме­щений и удлинений можно использовать формулы для одно­родного бруса с заменой ЕА на .

 

Расчет статически определимых стержневых систем

Статически определимая стержневая система – это система, в которой все неизвестные реакции опор и внутренние усилия можно определить из уравнений равновесия (статики).

Для «решения» любой стержневой системы необходимо выделить в ней объект равновесия. В связи с этим, все системы можно разделить на два типа:

1 тип – системы, состоящие из абсолютно жестких (недеформируемых) стержней и одиночных невесомых (деформируемых) стержней. Для стержневых систем этого типа объектами равновесия являются недеформируемые стержни.

2 тип – системы, состоящие из нескольких деформируемых стержней, соединенных в одной точке. Точки соединения двух и более стержней называются узлами, которые и являются объектами равновесия для систем 2-го типа.

Все соединения в элементах систем шарнирные, однако существуют определенные правила, по которым вводятся реакции и усилия в стержнях:

- в шарнире, соединяющем абсолютно жесткий элемент системы с «землей» или с другой конструкцией, всегда возникают две реакции – горизонтальная H и вертикальная R;

- в шарнире, соединяющем деформируемый стержень с абсолютно жестким стержнем или с другой конструкцией, всегда возникает одна реакция, направленная вдоль этого стержня и равная по величине усилию, возникающему в нем.

В абсолютно жестких стержнях никогда не возникает внутренних усилий, они не деформируются!

- в шарнире, соединяющем несколько деформируемых стержней (узловой шарнире), возникают усилия, направленные вдоль этих стержней и сходящиеся в этом узле.

Порядок решения большинства задач о проверке прочности статически определимых стержневых систем при расчете по допускаемым напряжениям сводится к следующим этапам:

1) находим внутренние усилия (продольную силу при растяжении-сжатии) и выявляем опасные сечения;

2) определяем напряжения;

3) после выявления максимальных напряжений используем условие прочности (формулы (2.26), (2.28), (2.32)) при растяжении-сжатии).

 

Пример 11.

Абсолютно жесткий брус CD поддерживается стальным стержнем AB, имеющим площадь поперечного сечения 100 мм2 (рис.2.25, а). Определить из условия прочности стержня AB допускаемую нагрузку [P] и проверить, обеспечена ли жесткость системы, если допускается перемещение сечения D бруса под действием силы P не более 2 мм. Допускаемое напряжение принять равным  МПа, модуль упругости Па.  

Ocr0312

Рис.2.25

 

Решение.

Используя метод сечений, определим соотношение между продольной силой N в стержне AB и нагрузкой P. Из условия равновесия сил (рис.2.25, б) находим

Допускаемая продольная сила [N] для стержня AB из условия его прочности

Допускаемая нагрузка на систему

[P]=[N]/3=15/3=5 кН.

При нагружении системы стержень AB удлиняется на , а абсолютно жесткий брус поворачивается, оставаясь прямолинейным. Система после деформации стержня AB показана штриховой линией на рисунке 2.25, в. Из треугольника ABC определяем длину l стержня AB: l=1/cos300=1,153 м.

На основании принципа начальных размеров принимаем, что значение угла  не изменяется, а точки B и D перемещаются по вертикали.

Из прямоугольного треугольника BBE находим

; так как , то

Перемещение точки D определяем из подобия треугольников  и  

Жесткость системы не обеспечена.

Следует заметить, что нельзя повысить жесткость системы, применив для стержня AB более прочную сталь, так как характеристикой свойств материала, влияющей на жесткость, является модуль упругости, значение которого для всех марок сталей примерно одинаково. Повысить жесткость системы можно, либо увеличив площадь поперечного сечения стержня AB, либо уменьшив его длину.

 

Пример 12.

Определить допускаемую нагрузку [P] для системы из двух стержней, изготовленных из дюралюминиевых труб одинакового поперечного сечения (рис.2.26, а). Допускаемое напряжение принять  МПа.  

Ocr0311

Рис.2.26

 

Решение.

Используя метод сечений, вырезаем узел B и из уравнений равновесия сил

находим неизвестные продольные силы, возникающие в стержнях, через нагрузку P (рис.2.26, б)

Допускаемую нагрузку [P] определяем из условия прочности наиболее нагруженного стержня 1: 

Следует отметить, что стержень 2 недогружен. Напряжение в нем

что примерно на 30% ниже допускаемого. Для стержня 2 можно использовать трубу меньшего поперечного стержня.

 

Пример 13.

Рассмотрим стержневую систему, состоящую из абсолютно жесткого (недеформируемого) стержня AC, шарнирно закрепленного в точке A и невесомого (деформируемого) стержня BD, шарнирно закрепленного по концам, загруженную в точке C сосредоточенной силой F (рис. 2.27).

image076

Рис.2.27

 

Решение.

Объектом равновесия в данном случае будет являться стержень AC, для которого и будем составлять уравнения равновесия.

Под действием внешней нагрузки, на основании введенных выше правил, в точке A будут возникать две реакции  и , а в стержне BD возникает усилие , направленное по стержню (рис. 2.28).

Определим несущую способность (грузоподъемность) заданной системы, то есть допустимую нагрузку F, если площадь сечения стержня , расчетное сопротивление материала стержня R=200 МПа.

Для этого можно составить следующие уравнения равновесия:

image077

Рис.2.28

 

Поскольку в конечном итоге решение задачи будет сводиться  к определению усилия в стержне BD, то оставляем в рассмотрении уравнение равновесия, содержащее только , то есть уравнение моментов относительно точки A. Распишем данное уравнение: